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FOREWORD

This report is submitted as part of Contract AF 33(038) 2106,
which was initiated by the Office of Air Researche. Work under this
contract was begun at the Graduate School of Aeronautical Engineering
at Cornell University in March 1951. The report is one of a series to
be published as the result of the work carried out under this contracte

The project is being directed by Professors Nicholas Rott and
W, R, Sears, and the constant assistance of Professor Sears on this in-
vestigation is especially acknowledgede The investigation was suggested
to the author by Professor Arthur Kantrowitz, whose interest in Mach
reflection originated in his researches on "Propagation of Expansion and
Compression Waves," which are partially supported by the U.S. Office of
Naval Research,

Mr. L. S. Wasserman of the FlightResearch Laboratory, Wright Air
Development Center,was the project engineer of this report,authorized

by Research and Development Order No. 465-5-6, Practical Problems in

Aerodynamics,
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ABSTRACT

The configuration of non-stationary Mach reflection has a
conical similarity in time-space, since there is no fundamental time
or space interval involved. This property is easily shown (Part Ib),
and can be used to simplify the determination of wvarious disturbance
auantities.

For this type of reflection the strength of the reflected shock
depends on that of the incident shock and also on the deflection angle,
To the first approximation, this reflected wave is a sonic fronte Thus,
the resulting boundary-value problem in linearized theory is relatively

152,3
simple, and has been attacked by several investigators o The ex-

tension to second-order theory is discussed (Part Id) tut is not carried
out in detail,

Based on the results obtained from linear theory, it is shown
how the shock strength can actually be determined to the second order
(Part II). The strength of this reflected shock is found to be of

second order, and it vanishes at the triple pointe.

PUBLICATION REVIEW

The publication of this report does not constitute approval
by the Air Force of the findings or the conclusions contained therein.,
It is published only for the exchange and stimulation of ideas.

FOR THE COMMANDING GENERAL:

L A &/4%?7
Be WILLI , Yolonel, USAF

ief,Flight Research Laboratory
Research Division
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I. Mach Reflection

(a) General Consideration

Let us consider a plane shock I propagating into still air
with 2 constant velocity Tf in the positive X direction; the air
behind the shock has a uniform velocity T, « Iet us further denote
the flow region ahead of the shock by © , and that behind by 7/ .

With respect to a frame attached to shock Z , this is a
stationary flow fielde The strength of shock 7 is measured by the

pressure ratioc 3 = A/ Po s or by the Mach number in flow 7/

) g -Ur
referred to frame [ , i.c., G = —
<. g, U;
Since -
2 r ¢ 1
/ 200~ o= LAt A S
£ - ey ’ (-0 e §) fr fe
r-oal @ | f
2 ~ ) o
o o 2L T U_‘_’;_i‘_(—-——’a—_—vQ, Q, a,
7 (r"*, ) o L (rffl)

two irmediate conclusions can be drawn.

i) Since ¥ >/, i.esy 0" </ , with respect to flow in / , shock
I always propagates with subsonic speed, so that any disturbance in 7
catches up with the shocke Thus when the shock hits a wall corner, the
appearance of Mach reflection is natural unles-~ the turning angle J be

so large that the so-called "regular reflection" occurs.
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ii) The Mach number of flow ,/ is given by
Uy 2 (- T
M =, T &) T

Thus the flow behind shock is supersonic (A,>7) when
v« JOGES, - T = o sec

2. ¥ 2.4
= = = 4‘.84
3 = z2.85g* ¢ < 96

or
and subsonic ¢ M, </ ) when o> 0566 ,or ¥ < +8%4,
When such a propagating plane shock hits a corner, the con=-
figuration of resulting Mach reflection can be stated as follows:
There is a triple point 7 ; part P 7 of shock I remains straight,
being unaffected by the signal from corner A4 ; part 7Q is curved, due
to effect of deflection by A 7{\F is the reflected wave signaling
the presence of A (in the first approximation, the entire front is
sonic in subsonic case, while only part T’;" is sonic in supersonic
case); and a slip stream 7S appears, across which entropy and
density (but not mressure) are discontinuouse. (Fige 1, 2)s The whole
region a propagates to the right with velocity U,' and at the
same time expands radially about origin © with speed of sound <, ,
Inside region ey o Uthe flow is non-steady. Howéver, by a proper
transformation of coordinates it can be shown that there exists a
conical property, with © as apex, and time ¥ as axis of the cone,
so that the problem can be reduced to a two dimensionalsteady one.
The flow will then be signified by two parameters in its conical planes

strength of the incident shock, and angle of wall cornen
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(i) subsonic (ii) supersonié

An exact solution to the problem is mathematically not
vpractical,- so a linear solution is first sought., This has been done
by different guthors under different assumptions.

If 49 is very small, reflected wave is weake. Vorticity s
above the slipstream can be neglected (indeed, 42 < OC 49’)). However,
unless incident shock is also weak, vorticity in region © 4 T is by
no means negligible.

(1)

By assuming a weak shock and small corner angle, Bargmann
investigated the disturbance-velocity distribution in the whole
region {‘a by introducing a velocity potentiale This, however,
necessitates an assumption that the shock be so weak that the
existence of the slip stream and the region of rotational flow can
be neglecteds Later, not assuming weak shock, Lighthill(z) showed
that the disturbance pressure A in whole region 'C", satisfies one
single conical equation in spite of the presence of the slip stream
and the rotational flow, and so he calculated the pressure distribution
along both the wall and Mzch shocke Recently, Ludloi‘f(B), using the
Lorentz transformation, determined both pressure and density field
in € o  His analysis showed the slip stream lies along the radial

line ©7 , as expected, flow in region © 7@ being rotational, while

that in region ©7 P  irrotatioral,
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Utilizing the results of previocus authors, it should te possible
to determine the disturbance velecity « , V" in region OTP , btaking
into consideration the slip stream, sc that the incident shock need
not be weak, althcugh tI}e deflection angle would still be assumed
small. This solution should prove an immediate improvement over
Eargmannts.

Althougl: we allow the shock strength to te not small, we shall
in the present report still limit it so that the flow behind the shock
is subsonici the case where the after~flow is superscnic will be left
to further investigation.

Essentially, the procecdure follc:we& will consist in taking the
uniform flow behind the straight shock as our basic flow, and de-
flecticn engle A} as a perturbation. Thus all the perturbing quantities
will be expressed in orders of 4} o DBazed on the results of the
present investigation, further approximations can be carried out using

a technique supgested by Lichthill,
(b) Conical Similarity

Desigrate the uniform flov field behind the propagating
straight shock by 7 , the disturbed flow behind the curved Mach shock
and inside the reflected front 2 by 2 .+ Ilet velocity, pressure,
density and entropy be denocted by _2‘., P /f., s, ( €=2,2),
anrd the correspondi:y non~dimensicnal perturbed quantities by (e, ¥, PR s

’

" so that
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?'1..: 71 [’f“l‘ﬁ)
P2 = p+ 9D LP
P. = ccr+ P

M, = 7' /Q,

Then referred to the fixed coordinate system with corner as origin,
the ecuation of contiruity, equations of motion, and ecuation of

encrgy (isentropy along flow line) take on the following forms

2L
g—/—g—.{. ?,{If")'—'x’-f ? ""3-7 7 {)z'f‘oy)—‘o

a2/l _
Z—%‘f 7,('/4-:/);— *?,VJ? t ;é = (1)

2v a.r 2L -
2 - 7,/"»/53, «%vey T H FY T °

- 23 _
"’r_st’ - ?I (n‘u)}—? + 71“5'?’_ = 9o

On intrcducing the transformation

X-7t N (2)
X = @.t Jz @, €

we are referring the flow to a new reference frame which has its origin
at © and moves together with flow, and we are contracting the whole
flow field by a scale @, € . This means that, at any instant, the

soric front that originated from @ in the physical plane

X-g¢) Y= oca "
(X-5.¢) 7 = cab o

reduces to the unit circle in the transformed plane:

2

e g = ()
If by this transformation we can eliminate the time dependence, then
our preblem simplifies to a two-dimensional steady ones That is, the
non-steady motion will have a conical property in space-time; the apex
of the cone being at e , the axes of the cone being the time ordinate,

normal to the plane of the motion.
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2

Now since 3 _ _L. D 2 - L =
5x = a,f ox ; ’y T a T

2 x Ty _ 22

3¢ = “(F Tat)em Tt 97

we have, on intrcducing the transformation, the following system of

eq ations of continuity, motion and energy

D2« 2 v
Dp= MR lsx " 57) (5)
‘ ap
D« = /;70 DX
. 2P
D v = Ivp °F

2V

-
D p = cos Trpr (534 357)
=
me e e [B e ttro + 105]
L) >
= 2Bt Sy MBS

The form of the system of equations clearly shows that the moticn is

indeed conical in time~space.

Using vector motation 7 = (u, w3, ¥=(x, j7), these take

the form

it

(L£-mMm32).-vZ /7'}0 v
(L ~r, 2D -vfP = M CrrP) V-;Z

6
(_"—M,?}-v/’: (/—1-7‘7-4,,5)7.7? 6)

(V refers to r plane hereafter)

(¢) Linearizaticn

Let us suppose that all the perturbation cuantities and their

derivatives are small, i.ee.

u, v, £. pP. ek <<
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Then we have

I.qﬁ:M,V-?

r.- V; = VP (7)

oFr 2/ = Mz(’(+5—-
or X ¥x T 72 2 ‘7)
22,
x3‘§*7§}! = ox
v 2,
% v FY =Y
’ aq v (7')
2 _ 2z
"?ox*y;f' -2 +7

In confornity with the approximationy it may be noted that the
reflected front F’,/l coincides with the sonic front, i.e.y ¥=1! , and
slip stream ST coincides with radial line & = Coe  (Ms- £71.)
By eliminating the undesired variables, it is easily obtained.

i) Pressure perturbation
- r. V,? = (r-F+1) 7_7’ = (r'Vf‘/)(_':'VP)
= v (8)
i.e. 2 2P '
Vz/bz (r.vr‘fl) ("D_;’
Thus even when vorticity is present, A satisfies a differential

equation which is well known from usuai steady conical flow probleme The

problem is immediately solved by introducing the Chaplygin transformation,

with boundary values determined by consideratioh of Rankine-Hugoniot

conditions. Accordingly we have

‘Vszf =0 (9)
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vhere

7 ~ JI_-T\
r (10)

is the Chaplyein transformation. This is the approach by which
(2)

Lighthill calculated the pressure distribution.

(i1) Density perturbation, since

vPe = M gp (11)

so in a region vwhere there is no vorticity, it is imrcdiately ob'tained
that ° = A, A However, it should be ncted here that € is now
divided intc two separate regicus by the slip stream, and this nice
simple relaticn holds only in region ©7 P, For region 07§, P hes
ditfferent bteundary condition than p and the solution will accordingly

2
be differente This fact is clearly hborn out by ILudloff's calcuk ticn.(J)

(ii1) Velocity perturbation
rr.v2z v-g , vx_r-??: vyXvp =o

(r.v+1)cvXZy=o0

By elimination, it is easily obtained that

or

(r.p-l—l)[(C- V“’)(.’:'V)—-VL]? =0 (12)
Now (rro+2)8 = o

.. ,

gives s = P ()

So cn introducing Chaplygin trarsformation (10), we obtain in general
<,

‘;? = frs> PO (12)

lecey 4 , V satisfies a Poisson differential ecquaticne.
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However, if the flow is irrotational, elimination again results

in equation (9).
Vz; = (r.v+1) 77 7).? (13')

2
or
Thus, if we confine our attention to the vorticity #ree
region. ©7 P , it is seen that the problem simplifies to solving the
equation (13') subject tofollowing boundary conditions:
0, i) 77,
i) alongwall oP , v=0 , J7 =9 ;  ii) over PT , i.ed,
=1 y U= v = O s and iii) on oT , normal velocity

component vanishes since this is a slipstream.
(d) Higher Approximations

From above, it is clear that with boundary conditions properly
determined, all first order quantities u, v, /£, © can be calculated.
Now suppose these have been found. A second approximation can be readily
carried out in following mamners:

Putting 2 3)

h D AR ad R S
(1L)

where ¥ denotes any of u« s Vs Ps P ,and collecting the second
order terms in egs. (6), we obtain
P &) ) Py
v p g, 3P a (P70 2 )

LS of -M,;i".’ v = -ﬂ"’v/’h 7/‘“) (15)

‘)

-, V/b - s, a-) v/b“) f/} ? 7.2

[}
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Thus the equation for the second-order term in ,ﬁ becomes
p™
V:.f )y (,.a?. +1) (’g‘t
l/) @)
”) z + /Vf‘l)/ . V/

//2 v+r'.;‘r+")/’"J[ 3877

(16)
ey (¢ *1/

3 «© 0 [ {4 (¥4
or Vs f J = -/ (/ )’ ; ))

The corresponding boundary conditions over the wall can bhe ob-
tained by standard procedure, those along Mach and reflected shocks
should be obtained by first determining the second order values on the

original boundary using Lighthill's technique. Thus the work involved

in a second order soluticn will in general be prohibitive, and accordingly

not attempted. Only the shock strength of reflected wave, which is of

physical interest, is investigated in next part of this reporte
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ITI Strength of Refiected Shock

Since for small wall deflection angle 7 the flow behind
straight shock and slip stream is irrotational,* we are justified
to introduce a velocity potential J s Which, on account of the

conical property shown before, further reduces to the form

x
Berlest) = axe £ tr o (1)
*
v, _ I
where we have put @, = R~ , r= et .

Now denoting partial derivatives by subscripts, the radial and
tangential velocity components & . v~ can be written |
w= & ,* = 4 e,
v = i,}f 9 = —f—' e

and since

(% dpn = {éf)r+é’rt = f-rf)aq?’
{ftf),f = ‘.Ffrr a,l

So we have
. et Q*
1) 1 a i — = _—
}-t + 7 (« +V ) Tt 1

et L Ee ke fOF AR
a = .
1) «% -f{tt'*?Z“‘?"‘-l- Z‘Sa/tfj-;—’f/

% vF = A e ’“["r/rrf‘t?’)*";fa/;‘r’a"’/ro)]

+t"'[-fr"1(/r‘f f&&*f‘,—’riﬁf/‘fl‘fo)fr_jbf’,{]

*“"E—: olJ?) Bargmann, p. 16
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* ’ 3
as V’,«;: 'C‘V/
a,r

+ .
ve = - % (-L% + Lfra)
j.ee .
L3 ’
2 ot = rfor s z[-rrf,ﬁﬂ LAy - Fotre]
a’*

(3)
- [74‘74’1‘ ’., o. '[0"/0_,__ '/af,o]
Eliminating gT from i) and ii)
[‘[rrf ;;" - ,'.L\ fag] I—-(l"’-:)[f-r/; + 4 (A + r"-fo\)]j
*rr - 2”/1-‘1[//'

= r

rl-fﬂ - "Fo‘l[rﬂ
I. /'f L .
+ LA * r'f "66 - =3 - ":;_/r/a/,'—e

r3

S
o ,5 S rn F o f Ay ] e (R lrte- 14°7] £er

+/'/erm; l-'n/o/vrr;j 'f’; #r6, Y606 ]=

(L)
Referring to ccordinates fixed with respect to shock, the Rankine-
Hugoniot cendition can be written

(4)
i) Z = continuous (5)

i 2 al g
i) a2 25 (ga - 17
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where Z #3204 Z 27 dencte velocity components tangential and
normal to the shock respectively, and 4¢) denctes the increase of a

quantity across the shock fronte

Now since _4_? exists, and flow is steady in the (7 6) plane,

let the reflected shock fronmt be + = # (@) s then
wsz= a (-7+7%) v= 2 fe

(62 _ Fo + 706 (Fr-1)
= *f_l‘*’-;?f'l—

A

7 ()  ~cfr-p) + r 718

= a,

ﬁ-} r"‘?"'

i) gives A4 [7[0* 7’/5)f/"7)]=0

- -t st
ii) a ) _ - A7y, -~ r (4 Aﬁa

Z - ¢ = - I-l-l"""~70"L Q, Afr‘

i.ea, 2 _ar Z(-.)) - 2 / ' -‘("‘-l))( /-:fr) - z(»)j
re (g rer 317 /a,
Therefore we have y;
~ -Fr -7’70
ate -2 [ <7 F3) 7:+r°’7" /
r T re Larly-for raf0)
-2/ e (£207) _fpgoy- £ f
el /4 (7_,) - fr (6)
= 2 [conc#-rie) - 2fe + “7"’]
[ aet'}
Since fi= Fir = © on R=l and o p ~ A(8)/1-R

in linear theory.
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But
r=p ;{e - - L+ rfr AL T- g R->I

p’Ut =7 vL ~1,*" (7)
So ‘I[,R = M, A8) Ji-R
(L) (8)
Following Lighthill by putting
r= R+ ri(é) = /?+n(9).+/a,(0)+.. ()
9

£ = £ 1R, 8 + #2(R,8) ¢ ---

in (L) and condition on R = , that the linear coefficients in

(4) must vanish; and noting that although since
2 2
or T 9R

terms -9 and f@e may produce terms in Frp , they are however

2
56 > 58 - r'(®)3n

all not of dimension 1; we have

-2 Rr, —r)h-RHR) + zRJ;R =0

i.ee ©H (8) = O

New
bis [(T<)RE R +2R%R]Fi1an = (70 Rtir Tinn
R->q¢

= - {:-1’ M,"‘A"/ﬁ)

So ey
3 A N
fone Froo = 5 n 0o

[’zrz’[ﬁ')('/g- /;-IZ,)-F ‘.fzn7ﬂ7—»l= Q (ll)

rv» (0) ~ AY(6)
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The shock condition at » = /@) are: Since f= o

ahead of shock, so directly behind it

£ “ {n=-1) ‘
Shock cones in range R< 1/, n </t~
so  7-1 of dimension 2, 7 =/*Zuvt g1 t--, ©OF 7+ € T2

In condition f=0 on r= 72(8) , terms #1y ¥z yeeecan be
expanded by Taylor expansion (at R = 1) using R = 7+ (2.~r)+ (3~ ¢ -

Terms of dimension 1 and 2 give

[./,)R“=o (-A)Rr-’:O
T%ys L
(fzre)a._, = —4 M A(6) (13)

ra (8) = (f-'gl‘M,"A"la)
To express the second condition of (R ), #R is needed when
R= 1+ (Qumre) + (P3-73) + -
The largest terms here are of dimension 2, and these come from

’f,r{ ~ M."A/G) Jir-R and from (fa.n) nr =y

so they are
M EAB) Jrisg, + (Fard .,

by (12) and (13)

—

(8-+1) > —_— s -
M, ‘A (6) ——“;— Ml“A /a) - 77. + 2 M' A {0) - ,"-(-’ (16)
) (f"-ol)t “
Putting 7, = & ™. k (8) , this becomes
A8 [Ave) - K(6) = 2K(6) - A*(E) (15)
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The solution of (18) gives

? 2
= =—A*(9 Ale) >o
K (8> = | (16)
= o A (B) < o
For the case of compression, A(B) >0 s the shock is thus

located at

r= 4 7 (8e) 1, 7ATE)

(17)
Now the pressure change across the shock is
~ £(72-1
(of ['[ f) = F o () M,
Since 7~ p, = Q. ) o the shock strength is given by

i 4>

7,(8) = Z &) rM7A%(8)

= (18)

P, (&%) MI"al\'.
where e - P

A =

(a) r->/f [ Ul Jar=r )
on linear theory
op
= A in Cheplygin plane.

and }2—5 as given by Ref, 2 (59) is

2 ‘2 ¢ ) Dlx,~xed>-]
é_ﬁ = /2?’ z
” ~(x"~_,)i(,"-xo)[¢¥4- ,-x,][‘éf 1—7,]

-g% at triple point ¢x = R, ~, = ©0 ) is a

strength of reflected shock vanishes at the triple point.

s SO
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CONCLUSTIONS

The conical property in time-space of diffraction of
propagating plane shock is discussede Second order solution for
pressure f has been suggested, but since this requires more informa-
tion regarding 4 , v~ and the second-order boundary conditions than
is presently available, actual carrying out of the solution is not
attemptede.

The strength of reflected shock, however, has been investigated;
end it is found to be generally of order n} v In mrticular, this
vanishes at the triple point. The immediate conclusion is that while
the strength is of second order in general, it can be at most of third

order at triple point in particular.
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APPENDIX

The Reflected-Shock Angle at the Triple Point

A slight extension of this investigation discloses
that at the triple point where the incident, reflected and
Mach shocks meet, not only is the reflected shock of vanishing
strength but also is it locally tangent to the acoustic circles
The latter statement can be proved as follows:

Denoting by ‘/’ the angle included between the

reflected shock and acoustic circle, then
1? 7b = ‘f‘i—}e (29)
where 1 is given by Eq. (17).

Now the mapping fromthe S = Pe 4 plane
tothe 2, = x,+ Y, plane, in Lighthill's paperz, is
everywhere analytic, so /[ :%'/ and its derivatives are
finites Even though the mapping from the physical conical
plane r €% 1o the 5 plane is singular on the unit
circle, the following relations hold:

2. _ © o =

P36 ~ rao °or = PP JST-r> (20)
So it is immediately seen that this singular behavior will not

affect the determination of '7" . Furbhermore, since

2 _ 2 _ 254z
P26 T 26 T Ix or.r/
we eventually get
2
2y b izl ':a_'_.q
z'; ¥ = ~20 ~ i:;;? (f;")"""yl} /% Ax (1)

and the conclusion follows at oncee
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